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Nonequilibrium roughening transition in a volume conserving system
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We introduce a simple volume conserving stochastic model undergoing a nonequilibrium roughening tran-
sition ~NRT! in 111 dimensions. In our model, there is no deposition and evaporation of a particle breaking
the volume conserving condition. The degree of roughness of the fluctuating interface in our model is deter-
mined by whether or not the hopping of a particle depends on the local slope of the interface. The hopping
process of a particle is controlled by the probability 0<p<1. Forp,1/2, a moving particle tends to hop in the
downhill direction of the local slope of the interface, and so the interface is in a smooth phase with a zero
roughness exponent. Forp.1/2, a particle tends to hop in the uphill direction, and so the interface cannot
reach a saturated phase. Whenp51/2, the hopping of a particle does not depend on the local slope of the
interface. Then the interface can reach a saturated phase. The saturated interface atp51/2 is in a rough phase
with a nonzero roughness exponent. Our model, therefore, exhibits the NRT at the critical parameterpc

51/2.
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The nonequilibrium roughening transition~NRT! in (1
11)-dimensional systems has recently attracted much in
est@1–5#. The NRT in 111 dimensions is a very interestin
phenomenon because an interface under thermal equilib
cannot undergo a roughening transition in 111 dimensions.
An interface under thermal equilibrium is always in a rou
state with a diverging width in 111 dimensions. In higher
dimensions, an interface under thermal equilibrium can
hibit the roughening transition from a smooth phase to
rough one with diverging width or vice versa at some critic
temperature. However, an interface far from equilibrium c
exhibit the NRT even in 111 dimensions, although there a
few examples@1–5#.

Recently Alon et al. @1# introduced a simple growth
model exhibiting the NRT in 111 dimensions. In the mode
the dynamics is defined as follows. First select a sitei ran-
domly. At the sitei, a particle is depositedhi→hi11 with
probability p or evaporated at the edge of a stephi
→min(hi ,hi11) with probability (12p)/2 or hi
→min(hi ,hi21) with probability (12p)/2. In the restricted
solid-on-sold~RSOS! version of the model, the above pro
cesses occur only if the constraintuhi2hi 61u<1 is re-
spected. In the unrestricted model, the above processe
always carried out without any restricting condition. Alo
et al. measured the roughness exponentz in their model by
changing p. They found that z is zero when p,pc

@50.232 67(3)# and positive whenp.pc for the unre-
stricted model. They also found thatz is zero whenp,pc

@50.1889(1)# and positive whenp.pc for the RSOS
model. Therefore the model shows a NRT from a smo
phase withz50 to a rough one withz.0 at the critical
valuepc in 111 dimensions. Alonet al. mentioned in their
paper that when evaporation of a particle in the middle o
plateau is allowed the interface formed by their model
always rough and no smooth phase exists. In a volume c
serving system, however, the interface can exhibit a NRT
111 dimensions even when the movement of a particle
the middle of a plateau is allowed.
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In this paper, we introduce a simple stochastic model s
isfying the volume conserving condition. By carrying out
Monte Carlo simulation of the model, we show that the v
ume conserving model exhibits the NRT in 111 dimensions
even when the movement of a particle in the middle o
plateau is allowed. The dynamic rule of our model is
follows. Each time a sitei is selected randomly. It is checke
whether the height at any neighboring site is greater thanhi
by at least one lattice spacing. If so, the particle at sitei is
regarded as immobile and a new site is chosen. If not,
particle at sitei is moved to the nearest neighbor site acco
ing to the following processes. If (hi 212hi 11),0, the par-
ticle can hop to sitei 11 with probabilityp or hop to sitei
21 with probability 12p. If ( hi 212hi 11).0, the particle
can hop to sitei 21 with probability p or hop to sitei 11
with probability 12p. If ( hi 212hi 11)50, the particle can
move to a randomly chosen one of its nearest neighbor s
Note that dynamics can occur in our model even whenp
50. Our model is a simple discrete model for interface
construction without the deposition of particles. Whenp is
very small, a particle at a randomly selected site moves
downhill direction with great probability when there is a lo
cal slope at the selected sitei. Only when a particle is in the
middle of a plateau in our model can it move to one of t
nearest neighbor sites regardless ofp. In that case, the heigh
of the randomly selected particle decreases by 1 and
height of one of its neighbor sites increases by 1. This mo
ment of a selected particle on the plateau makes the inter
become rougher even for smallp. However, this movemen
of a particle occurs rarely in comparison with the downh
movement for smallp after the interface goes to a saturat
state. The downhill movement of a particle makes the int
face become smooth. Therefore, the interface formed by
model is in a smooth phase whenp is small. Asp increases
from a small value, many more particles tend to move t
nearest neighbor site with greater height and the interf
becomes rougher. Whenp51/2, the dynamics of our mode
is the same as that of the model introduced by Krug@6#. The
©2001 The American Physical Society01-1
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dynamics of the Krug model is well described by the co
served Kardar-Parisi-Zhang~CKPZ! equation@6#,

]h~x,t !

]t
52K¹4h1l¹2~¹h!21hc~x,t !. ~1!

Here h(x,t) is the height of the interface at positionx and
time t. The conserved noise satisfies^hc(x,t)&50 and
^hc(x,t)hc(x8,t8)&522D¹2dd(x2x8)d(t2t8), where d
and D are the substrate dimension and a constant, res
tively.

The CKPZ equation shows a nontrivial scaling behav
in the interface width. The interface width is defined
W(L,t)5^L2d8S i@hi(t)2h̄(t)#2&1/2, which scales as

W~L,t !; H tz/z if t!Lz

Lz if t@Lz. ~2!

Hereh̄, L, d8, andhi(t) denote the mean height, system siz
substrate dimension, and the height at timet and sitei, re-
spectively.z, z, and b5z/z are called the roughness, dy
namic, and growth exponents, respectively. The roughn
and growth exponents of the CKPZ equation can be obta
easily by solving the CKPZ equation analytically. Th
roughness and growth exponents arez5(22d)/3 and (2
2d)/(101d).

We carried out simulations of our model in 111 dimen-
sions for system sizeL540– 120 atp51/2. We could not
carry out computer simulations for system sizeL.120 be-
cause of the long saturation time. Numerical data were a
aged typically over 100 configurations. In order to obtain
growth exponent, we measured the time-dependent beha
of the interface widthW(L,t) starting from an initially flat
interface. We plottedW2(L,t) vs timet on a double logarith-
mic scale in the inset of Fig. 1. The interface width gro
with the exponentb.1/11. The result agrees withb51/11
as expected from the CKPZ equation. Next, in order to
tain the roughness exponent, we plotted the saturated v

FIG. 1. Plot ofW2(L,t) vs system sizeL at p50.5 on a double
logarithmic scale for system sizesL550, 60, 70, 80, 90, 100, 110
and 120. The line obtained from the least squares fit has the s
2z52/3. Inset: Plot ofW2(L,t) vs time t for the system sizeL
5120. The slope of the line is 2/11.
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of W2(L,t) vs system sizeL on a double logarithmic scale in
Fig. 1. We obtainedz.1/3. The result also agrees withz
51/3 as expected from the CKPZ equation. Therefore,
saturated interface in our model whenp51/2 is rough be-
causez.0. From this fact, we can infer that a criticalpc for
the transition exists betweenp50 andp51/2 if a NRT oc-
curs.

Recently, Jung and Kim@7# studied the effect of symme
try on a volume conserving model without deposition a
evaporation by using the master equation approach. T
found that a Laplacian term is essentially absent from
continuum equation for the dynamics of the model with
symmetrical hopping rate. However, they showed that a
placian term can occur in the continuum equation when th
is an asymmetrical hopping rate in the stochastic rule o
volume conserving model. They succeeded in deriving
general Langevin-type continuum equation from the grow
rule with an asymmetrical hopping rate,

]h~x,t !

]t
5n¹2h2K¹4h1l1¹2~¹h!21l2~¹h!31hc~x,t !.

~3!

In our model, symmetrical hopping occurs only whenp
51/2. We showed via computer simulation that the dyna
ics of our model withp51/2 is well described by the CKPZ
equation without a Laplacian term. It is easy to find by usi
Jung and Kim’s argument@7# that n has a positive value
whenp,1/2 in our model andn has a negative value whe
p.1/2. Whenn,0, the interface formed by Eq.~3! is well
known to be unstable due to the antigravity effect@8#. The
width of the interface withn,0 grows continuously and so
does not reach a steady state. That means that the mor
ogy of the interface become rougher continuously as ti
elapses. We found that the width of the interface formed
our model grows continuously without reaching a stea
state for a large system whenp.1/2. Therefore the growing
interface is unstable and very rough whenp.1/2. Whenp
,1/2 ~i.e., n.0), the interface formed by Eq.~3! is stable
and in a smooth state because the Laplacian term tend
flatten the fluctuating interface. We found that the roughn
exponentz is zero atp50. Therefore the criticalpc for the
NRT must exist between 0,p<1/2.

We carried out simulations by changingp from p51/2 to
p50. We found that the roughness exponentz becomes 0 as
soon asp becomes smaller than 1/2. We examined the sc
ing behavior of the saturated interface width in the case
p50.499. The width shows a logarithmic behavior asW2

;(ln L)g, g52.1060.03, after saturation~see Fig. 2!. This
means that the roughness exponentz is zero. Therefore, we
can conclude that our model exhibits the NRT atpc51/2.

The NRT occurring in a growing interface in 111 dimen-
sions is known to be related to directed percolation~DP! or
parity conserving~PC! dynamics@1,2,9–11#. A few growth
models exhibiting the NRT in 111 dimensions have bee
introduced recently. In the models, the DP or PC proc
emerges at a particular reference height of the interf
@1–3#. The reference height of the models is the bottom la
of the interface. The sites where the interface touches

pe
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reference height correspond to the active sites of DP or
Therefore, in an active phase of DP or PC, the interf
fluctuates close to the reference level so that the interfac
smooth. On the other hand, in the inactive phase of DP
PC, the interface detaches from the reference level
evolves into a rough state. Then the interface grows w
nonzero velocity and becomes rough. In our model, the N
is not related to DP or PC. The interface in our model alwa
fluctuates near its average height regardless of the ph
rough or smooth, and the average velocity of the interfac

FIG. 2. Plot ofW2(L,t) vs system sizeL at p50.5 for system
sizesL550, 60, 70, 80, 90, 100, 110, and 120. The curved line
W2;(ln L)2.10.
s.
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always zero. Therefore, we cannot define the refere
height in our model because there exists no inactive phas
DP or PC.

In conclusion, we have introduced a simple volume co
serving stochastic model exhibiting a nonequilibrium roug
ening transition in 111 dimensions. We considered the ge
eral Langevin-type continuum equation describing t
dynamics of our model for differentp. When p,1/2, we
found that there exists a Laplacian term with a positive
efficient in the general Langevin-type continuum equat
for the dynamics of our model. The Laplacian term wi
positive coefficient tends to flatten the fluctuating interfa
We foundz50 for p,1/2, i.e., the interface is smooth i
our model. Whenp51/2, the dynamics of our model is de
scribed well by the CKPZ equation where there is no Lapl
ian term. The roughness exponent expected from the CK
equation isz51/3 in 111 dimensions. Therefore, the inte
face is not smooth whenp51/2. We obtainedz.1/3 from
simulation of our model. Whenp.1/2, the dynamics of our
model is affected by a Laplacian term with a negative co
ficient. The interface, then, is always unstable and does
reach a steady state. We also found that the interface is
stable for a large system from simulation of our model wh
p.1/2.
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