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Nonequilibrium roughening transition in a volume conserving system

Kwangho Park;? Hyun-Joo Kim! and In-mook Kint
!Department of Physics, Korea University, Seoul, 136-701, Korea
’Theoretische Physik, Fachbereich 10, Gerhard-Mercator-Univargitasburg, 47048 Duisburg, Germany
(Received 2 September 2000; published 23 February)2001

We introduce a simple volume conserving stochastic model undergoing a nonequilibrium roughening tran-
sition (NRT) in 1+ 1 dimensions. In our model, there is no deposition and evaporation of a particle breaking
the volume conserving condition. The degree of roughness of the fluctuating interface in our model is deter-
mined by whether or not the hopping of a particle depends on the local slope of the interface. The hopping
process of a particle is controlled by the probabilitg p<1. Forp<1/2, a moving particle tends to hop in the
downhill direction of the local slope of the interface, and so the interface is in a smooth phase with a zero
roughness exponent. Fpr>1/2, a particle tends to hop in the uphill direction, and so the interface cannot
reach a saturated phase. When 1/2, the hopping of a particle does not depend on the local slope of the
interface. Then the interface can reach a saturated phase. The saturated intgefaté2as in a rough phase
with a nonzero roughness exponent. Our model, therefore, exhibits the NRT at the critical panmneter

=1/2.
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The nonequilibrium roughening transitiotNRT) in (1 In this paper, we introduce a simple stochastic model sat-

+1)-dimensional systems has recently attracted much inteiisfying the volume conserving condition. By carrying out a
est[1-5]. The NRT in 1+ 1 dimensions is a very interesting Monte Carlo simulation of the model, we show that the vol-
phenomenon because an interface under thermal equilibriugme conserving model exhibits the NRT if-1 dimensions
cannot undergo a roughening transition ift 1 dimensions. even when the movement of a particle in the middle of a
An interface under thermal equilibrium is always in a roughplateau is allowed. The dynamic rule of our model is as
state with a diverging width in £1 dimensions. In higher follows. Each time a siteis selected randomly. It is checked
dimensions, an interface under thermal equilibrium can exwhether the height at any neighboring site is greater than
hibit the roughening transition from a smooth phase to &y at least one lattice spacing. If so, the particle at isiee
rough one with diverging width or vice versa at some criticalregarded as immobile and a new site is chosen. If not, the
temperature. However, an interface far from equilibrium carparticle at siteé is moved to the nearest neighbor site accord-
exhibit the NRT even in + 1 dimensions, although there are ing to the following processes. Ih(_;—h;,;)<0, the par-
few exampleg1-5]. ticle can hop to sité+1 with probabilityp or hop to sitei
Recently Alon etal. [1] introduced a simple growth —1 with probability 1-p. If (h;_;—h;;)>0, the particle
model exhibiting the NRT in + 1 dimensions. In the model, can hop to sitd —1 with probability p or hop to sitei + 1
the dynamics is defined as follows. First select a sitan-  with probability 1—p. If (h;_;—h;,;)=0, the particle can
domly. At the sitei, a particle is depositetl;—h;+1 with move to a randomly chosen one of its nearest neighbor sites.
probability p or evaporated at the edge of a stép  Note that dynamics can occur in our model even wipen
—min(h;,h; 1) with probability (1-p)/2 or h; =0. Our model is a simple discrete model for interface re-
—min(h; ,h_;) with probability (1—p)/2. In the restricted construction without the deposition of particles. Wheis
solid-on-sold(RSO9 version of the model, the above pro- very small, a particle at a randomly selected site moves in a
cesses occur only if the constraitih,—h;.,|<1 is re- downhill direction with great probability when there is a lo-
spected. In the unrestricted model, the above processes aral slope at the selected siteOnly when a particle is in the
always carried out without any restricting condition. Alon middle of a plateau in our model can it move to one of the
et al. measured the roughness expongim their model by  nearest neighbor sites regardlespolin that case, the height
changing p. They found that{ is zero when p<p. of the randomly selected particle decreases by 1 and the
[=0.23267(3) and positive whenp>p. for the unre- height of one of its neighbor sites increases by 1. This move-
stricted model. They also found thétis zero whenp<p, ment of a selected particle on the plateau makes the interface
[=0.1889(1) and positive whenp>p. for the RSOS become rougher even for small However, this movement
model. Therefore the model shows a NRT from a smoothof a particle occurs rarely in comparison with the downhill
phase with{=0 to a rough one withy>0 at the critical movement for smalp after the interface goes to a saturated
valuep, in 1+ 1 dimensions. Aloret al. mentioned in their state. The downhill movement of a particle makes the inter-
paper that when evaporation of a particle in the middle of dace become smooth. Therefore, the interface formed by our
plateau is allowed the interface formed by their model ismodel is in a smooth phase wheris small. Asp increases
always rough and no smooth phase exists. In a volume corfrom a small value, many more particles tend to move to a
serving system, however, the interface can exhibit a NRT imearest neighbor site with greater height and the interface
1+1 dimensions even when the movement of a particle ifbecomes rougher. Whey= 1/2, the dynamics of our model
the middle of a plateau is allowed. is the same as that of the model introduced by Kiilg The
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z . of W2(L,t) vs system siz& on a double logarithmic scale in

Fig. 1. We obtained=1/3. The result also agrees with
! =1/3 as expected from the CKPZ equation. Therefore, the
/ saturated interface in our model wher=1/2 is rough be-
cause/>0. From this fact, we can infer that a critigaj for
| the transition exists betwegn=0 andp=1/2 if a NRT oc-
e curs.
gt Recently, Jung and Kirfi7] studied the effect of symme-
try on a volume conserving model without deposition and
evaporation by using the master equation approach. They
found that a Laplacian term is essentially absent from the
0 ! continuum equation for the dynamics of the model with a
2 symmetrical hopping rate. However, they showed that a La-
InL placian term can occur in the continuum equation when there
is an asymmetrical hopping rate in the stochastic rule of a
FIG. 1. Plot ofW?(L,t) vs system siz& atp=0.5 on a double volume conserving model. They succeeded in deriving a
logarithmic scale for system sizés=50, 60, 70, 80, 90, 100, 110, general Langevin-type continuum equation from the growth
and 120. The line obtained from the least squares fit has the slopgile with an asymmetrical hopping rate,
27=2/3. Inset: Plot ofW?(L,t) vs timet for the system sizé
=120. The slope of the line is 2/11. dh(x,t)
. vV2h—KV4h+ N, V2(Vh)2+\,(Vh)3+ 5.(x,1).
dynamics of the Krug model is well described by the con- 3
served Kardar-Parisi-Zhan@&KPZ2) equation[6],

o

2
InWwW

In our model, symmetrical hopping occurs only when
=1/2. We showed via computer simulation that the dynam-
ics of our model withp=1/2 is well described by the CKPZ
equation without a Laplacian term. It is easy to find by using
Here h(x,t) is the height of the interface at positionand Jung and Kim’s argumenit7] that » has a positive value
time t. The conserved noise satisfigs).(x,t))=0 and  whenp<1/2 in our model and’ has a negative value when
(ne(x,t) me(x' ")) =—2DV25%x—x") 5(t—t’), where d  p>1/2. Whenv<O0, the interface formed by Eq3) is well
and D are the substrate dimension and a constant, respegnown to be unstable due to the antigravity efff@L The
tively. width of the interface withv<<O grows continuously and so

The CKPZ equation shows a nontrivial scaling behaviordoes not reach a steady state. That means that the morphol-
in the interface width. The interface width is defined by ogy of the interface become rougher continuously as time

ah(x,t)

o =—KV*h+\V2(Vh)2+ 9.(x,t). (1)

W(L,t)=(L~4S;[h;(t) = h(t)]?)2 which scales as elapses. We found that the width of the interface formed by
g Z our model grows continuously without reaching a steady
W(L 1)~ tereif t<L ) state for a large system wher 1/2. Therefore the growing
’ L if t>L2 interface is unstable and very rough wher 1/2. Whenp

o <1/2 (i.e., v>0), the interface formed by E@3) is stable
Hereh, L, d’, andh;(t) denote the mean height, system size,and in a smooth state because the Laplacian term tends to
substrate dimension, and the height at titrend sitei, re-  flatten the fluctuating interface. We found that the roughness
spectively.{, z, and B=¢/z are called the roughness, dy- exponent{ is zero atp=0. Therefore the criticap.. for the
namic, and growth exponents, respectively. The roughneddRT must exist betweenQp=<1/2.
and growth exponents of the CKPZ equation can be obtained We carried out simulations by changipgrom p=1/2 to
easily by solving the CKPZ equation analytically. The p=0. We found that the roughness exponébiecomes 0 as
roughness and growth exponents dre(2—d)/3 and (2 soon ag becomes smaller than 1/2. We examined the scal-
—d)/(10+d). ing behavior of the saturated interface width in the case of

We carried out simulations of our model int1l dimen-  p=0.499. The width shows a logarithmic behavior \A%
sions for system siz& =40-120 atp=1/2. We could not ~(InL)?, y=2.10+0.03, after saturatiofsee Fig. 2 This
carry out computer simulations for system slze-120 be- means that the roughness exponéi zero. Therefore, we
cause of the long saturation time. Numerical data were aveican conclude that our model exhibits the NRTpat 1/2.
aged typically over 100 configurations. In order to obtain the The NRT occurring in a growing interface int1l dimen-
growth exponent, we measured the time-dependent behavisions is known to be related to directed percolaiib®) or
of the interface widthW(L,t) starting from an initially flat  parity conserving PC) dynamics[1,2,9-11. A few growth
interface. We plottedV?(L,t) vs timet on a double logarith- models exhibiting the NRT in £ 1 dimensions have been
mic scale in the inset of Fig. 1. The interface width growsintroduced recently. In the models, the DP or PC process
with the exponenjB=1/11. The result agrees wifB=1/11 emerges at a particular reference height of the interface
as expected from the CKPZ equation. Next, in order to ob{1-3]. The reference height of the models is the bottom layer
tain the roughness exponent, we plotted the saturated valw# the interface. The sites where the interface touches the
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15— . . . always zero. Therefore, we cannot define the reference
7l height in our model because there exists no inactive phase of
DP or PC.
LN In conclusion, we have introduced a simple volume con-
6l ; serving stochastic model exhibiting a nonequilibrium rough-
U ssl ? ] ening transition in % 1 dimensions. We considered the gen-
= Q° eral Langevin-type continuum equation describing the
S o~ T dynamics of our model for differernp. When p<1/2, we
45t o found that there exists a Laplacian term with a positive co-
il e efficient in the general Langevin-type continuum equation
for the dynamics of our model. The Laplacian term with
35— . : ' ' positive coefficient tends to flatten the fluctuating interface.

L T ) We found =0 for p<1/2, i.e., the interface is smooth in
InL our model. Whemp=1/2, the dynamics of our model is de-
FIG. 2. Plot ofW2(L.1) vs system sizé at p— 0.5 for System §cribed well by the CKPZ equation where there is no Laplac-
sizesL = 50, 60, 70, 80, 90, 100, 110, and 120. The curved line is 2 S/ The roughness exponent expected from the CKPZ
W2~ (In L)210 equayon ist=1/3 in 1+ 1 dimensions. Therefore, the inter-
face is not smooth whep=1/2. We obtained,=1/3 from
simulation of our model. Whep>1/2, the dynamics of our
reference height correspond to the active sites of DP or PGyoqel js affected by a Laplacian term with a negative coef-
Therefore, in an active phase of DP or PC, the interfacgicient. The interface, then, is always unstable and does not
fluctuates close to the reference level so that the interface ig5ch a steady state. We also found that the interface is un-

smooth. On the other hand, in the inactive phase of DP Ogtape for a large system from simulation of our model when
PC, the interface detaches from the reference level ang~ 1/o.

evolves into a rough state. Then the interface grows with

nonzero velocity and becomes rough. In our model, the NRT This work was supported in part by the Korean Science
is not related to DP or PC. The interface in our model alwaysand Engineering FoundatiofGrant No. 98-0702-05-01)3
fluctuates near its average height regardless of the phasand also in part by the Ministry of Education through the
rough or smooth, and the average velocity of the interface i8K21 project.
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